[5] B. de Falco, L. Grauso, A. Fiore, G. Bonanomi, V. Lanzotti, Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree, Phytochem. Anal. 33 (2022) 696–709.
https://doi.org/10.1002/pca.3121.
[6] F. Brahmi, A. Abdenour, M. Bruno, P. Silvia, P. Alessandra, et al., Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria, Ind. Crops Prod. 88 (2016) 96–105.
https://doi.org/10.1016/j.indcrop.2016.03.002.
[7] K. Ghassemi-Golezani, N. Farhadi, The Efficacy of Salicylic Acid Levels on Photosynthetic Activity, Growth, and Essential Oil Content and Composition of Pennyroyal Plants Under Salt Stress, J. Plant Growth Regul. 41 (2022) 1953–1965.
https://doi.org/10.1007/s00344-021-10515-y.
[8] P.S. Vankar, D. Shukla, Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric, Appl. Nanosci. 2 (2012) 163–168.
https://doi.org/10.1007/s13204-011-0051-y.
[9] C. Baker, A. Pradhan, L. Pakstis, D. Pochan, S.I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol. 5 (2005) 244–249.
https://doi.org/10.1166/jnn.2005.034.
[10] M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomedicine Nanotechnology, Biol. Med. 8 (2012) 37–45.
https://doi.org/10.1016/j.nano.2011.05.007.
[11] A. Martirosyan, A. Bazes, Y.-J. Schneider, In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds –preventive agents against the harmful effect?, Nanotoxicology. 8 (2014) 573–582.
https://doi.org/10.3109/17435390.2013.812258.
[12] K .J. Lee, P.D. Nallathamby, L.M. Browning, C.J. Osgood, X.-H.N. Xu, In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano. 1 (2007) 133–143.
https://doi.org/10.1021/nn700048y.
[13] P. Dallas, V.K. Sharma, R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives, Adv. Colloid Interface Sci. 166 (2011) 119–135.
https://doi.org/10.1016/j.cis.2011.05.008.
[15] T.N. Agaev, A.A. Garibov, S.Z. Melikova, G.T. Imanova, Radiation-Induced Heterogeneous Processes of Water Decomposition in the Presence of Mixtures of Silica and Zirconia Nanoparticles, High Energy Chem. 52 (2018) 145–151.
https://doi.org/10.1134/S0018143918020029.
[16] A.A. Garibov, T.N. Agaev, S.Z. Melikova, G.T. Imanova, I. A. Faradjzade, Radiation and catalytic properties of the n-ZrO2–n-Al2O3 systems in the process of hydrogen production from water, Nanotechnol. Russ. 12 (2017) 252–257.
https://doi.org/10.1134/S1995078017030077.
[17] G.T. Imanova, T.N. Agayev, S.H. Jabarov, Investigation of structural and optical properties of zirconia nanoparticles by radiation-thermal and thermal methods, Mod. Phys. Lett. 35 (2021) 2150050.
https://doi.org/10.1142/S0217984921500500.
[18] I. Ali, G.T. Imanova, X.Y. Mbianda, O.M.L. Alharbi, Role of the radiations in water splitting for hydrogen generation, Sustain. Energy Technol. Assess. 51 (2022) 101926.
https://doi.org/10.1016/j.seta.2021.101926.
[19] I. Ali, G.T. Imanova, A.A. Garibov, T.N. Agayev, S.H. Jabarov, et al., Gamma rays mediated water splitting on nano-ZrO2 surface: Kinetics of molecular hydrogen formation, Radiat. Phys. Chem. 183 (2021) 109431.
https://doi.org/10.1016/j.radphyschem.2021.109431.
[20] J. McGrady, S. Yamashita, S. Kano, H. Yang, A. Kimura, H. Abe,H2 generation at metal oxide particle surfaces under γ-radiation in water, J. Nucl. Sci. Technol. 58 (2021) 604–609.
https://doi.org/10.1080/00223131.2020.1847705.
[21] M-C. Pignié, V. Shcherbakov, T. Charpentier, M. Moskura, C. Carteret, et al., Confined water radiolysis in aluminosilicate nanotubes: the importance of charge separation effects, Nanoscale.13 (2021) 3092–3105.
https://doi.org/10.1039/D0NR08948F.
[22] T. Kojima, K. Takayanagi, R. Taniguchi, S. Okuda, S. Seino, T.A. Yamamoto, Hydrogen gas generation from the water by gamma-ray radiolysis with pre-irradiated silica nanoparticles dispersing, J. Nucl. Sci. Technol. 43 (2006) 1287–1288.
https://doi.org/10.1080/18811248.2006.9711222.
[23] G.T. Imanova, T.N. Agaev, A.A. Garibov, S.Z. Melikova, S.H. Jabarov, H.V. Akhundzada, Radiation-thermocatalytic and thermocatalytic properties of n-ZrO2-n-SiO2 systems in the process of obtaining hydrogen from water at different temperatures, J. Mol. Struct. 1241 (2021) 130651.
https://doi.org/10.1016/j.molstruc.2021.130651.
[24] H. Fang, Y. Pan, M. Yin, L. Xu, Y. Zhu, C. Pan, Facile synthesis of ternary Ti3C2–OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes, J. Solid State Chem. 280 (2019) 120981.
https://doi.org/10.1016/j.jssc.2019.120981.
[25] J. Ji, L. Zhao, Y. Shen, S. Liu, Y. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties, FlatChem. 17 (2019) 100128.
https://doi.org/10.1016/j.flatc.2019.100128.
[26] X. Li, X. Ma, Y. Hou, Z. Zhang, Y. Lu, et al., Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning, Joule. 5 (2021) 2993–3005.
https://doi.org/10.1016/j.joule.2021.09.006.
[27] X. Zhai, H. Dong, Y. Li, X. Yang, L. Li, et al., Termination effects of single-atom decorated v-Mo2CTx MXene for the electrochemical nitrogen reduction reaction, J. Colloid Interface Sci. 605 (2022) 897–905.
https://doi.org/10.1016/j.jcis.2021.07.083.